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I pioneered the use of mathematical models to describe glucose homeostasis in humans. My research 

activity has largely focused on developing glucose minimal (parsimonious) models of healthy, 
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system reimbursement to all Type 1 and Type 2 people on intensive insulin therapy. Artificial pancreas 

research was accelerated thanks to the FDA accepted Type 1 diabetes glucose maximal  model: I was 

able to do the first artificial pancreas trial in humans in 2008 in the hospital after 3 months of the IDE 

granted by FDA solely on the basis of in silico testing of the safety and efficacy of the designed system. 
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adaptive and fault tolerant which is critical, given the large inter-individual variability, for patient safety 

and treatment effectiveness in long-lasting free-living condition  

In essence my seminal work has resulted in the convergence of discovery science, in depth clinical 

assessment, and use sophisticated in silico models to improve the life the millions of people through the 

world who have diabetes. 

 

 

 

 

 

 

 

1. Measurement of insulin action and secretion from an intravenous glucose tolerance test (IVGTT).  

 

I pioneered the use of mathematical models to assess insulin action in humans by developing with Dr. 

Bergman in 1979 the IVGTT glucose minimal model that enabled to arrive at an index of insulin action, 

called insulin sensitivity. The model was derived first in dogs [1] and two years later in humans [2]. The idea 

was that minimal models must be parsimonious, i.e., they only describe the key components of the system. 

Desirable features of a minimal model include i) physiology based; ii) parameters estimated with reasonable 

precision; iii) parameter values within physiologically plausible ranges; and iv) system dynamics described 

with the smallest number of identifiable parameters. One generally proceeds by proposing a series of system 

models, beginning with the simplest and systematically increasing the complexity by including more known 

physiological details. Each model is first tested for a priori identifiability, subsequently numerically 

identified from the data, and finally the most parsimonious model is selected by using the 

identification/validation criteria described before. To facilitate the model selection process, system partition 

was introduced. In fact, to describe plasma glucose and insulin data it is necessary to simultaneously model 

not only the glucose, but also the insulin system and their interactions. This means that, in addition to 

modeling insulin action, one has also to model glucose-stimulated insulin secretion. Since models are, by 

definition, wrong, an error in the insulin model would be compensated by an error in the glucose model, thus 

introducing a bias in insulin sensitivity. To avoid this interference, the dynamic contribution of a subsystem 

should be eliminated. The authors developed a conceptual “loop cut” [3]: the system is partitioned in two 

subsystems which are linked together by measured variables, the insulin and the glucose subsystems. When 

the system is perturbed, e.g., by a glucose injection, and the time courses of plasma glucose and insulin are 

measured, then their time course can be considered as “input” (assumed known) and “output” (to be fitted) of 

the insulin and glucose subsystems, respectively. Models are then proposed not for the whole system but for 

each of the two subsystems, independently, thus considerably reducing the difficulties of modeling. Seven 

models of increasing complexity were proposed to explain plasma glucose concentration by using plasma 

insulin as the known input. The chosen minimal model was a nonlinear model: it assumes that glucose 

kinetics can be described with one compartment and that remote (with respect to plasma) insulin controls 

both net hepatic glucose balance and peripheral glucose disposal. The remote insulin finding was later 

experimentally proven to be the interstitial fluid [4]. The model provides an index of insulin sensitivity, 

which has been validated in numerous studies against the independent glucose clamp technique and has been 

widely employed in more than 1000 papers [4]. 

This index is essentially a steady-state measure, i.e., it provides the magnitude of insulin sensitivity but does 

not account for how fast or slow insulin action takes place. A new index, called dynamic insulin sensitivity, 

has been introduced to incorporate also the timing of insulin action [5]. 

 

The IVGTT glucose minimal model was later complemented by the IVGTT C-peptide minimal model to 

measure beta-cell function [6]. C-peptide is the correct signal to assess beta-cell responsivity since it is 



secreted equimolarly with insulin but it is not degraded by the liver. The model integrates a secretion model 

into the two compartment model of C-peptide kinetics. Insulin secretion is modeled with two components: 

first-phase secretion, likely representing exocytosis of previously primed insulin secretory granules, is 

portrayed as the release of insulin from a rapidly turning over compartment. Glucose exerts a derivative 

control, since first-phase secretion is assumed to be proportional to the increase of glucose from basal up to 

the maximum, through a parameter that defines the first-phase responsivity. Second-phase insulin secretion 

is believed to be derived from the provision and/or docking of new insulin secretory granules, and is 

assumed to be proportional to glucose concentration through a parameter that defines the second-phase 

responsivity. The second-phase secretion term includes a delay, presumably representing the time required 

for new granules to dock, be primed and then exocytosed.  

 

Since the glucose–insulin system is a negative feedback control system, beta-cell function needs to be 

interpreted in light of the prevailing insulin sensitivity. One possibility is to resort to a normalization of beta-

cell function based on the disposition index paradigm, first introduced in [2], where the disposition index DI 

is given by beta-cell function multiplied by insulin sensitivity. While regulation of carbohydrate tolerance is 

undoubtedly more complex, the paradigm proposed  that beta-cells’ ability to respond to a decrease in insulin 

sensitivity by adequately increasing insulin secretion can be assessed by measuring the product of beta-cell 

function and insulin sensitivity. DI allows to assess if the beta-cell function is appropriate in light of the 

prevailing insulin sensitivity, to monitor their variations in time, and to quantify the effect of different 

treatment strategies, However, the glucose–insulin feedback system is in all likelihood more complex than a 

rectangular hyperbola, i.e., a power function DI = beta-cell function x (insulin sensitivity)
alfa = constant. 

This issue, as well as several methodological issues which, unlessfully appreciated, could lead to errors in 

interpretation, have been thoroughly addressed in [7]. 
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2. Measurement of insulin action and secretion from an oral test (Mixed Meal Tolerance Test, MMTT/ 

Oral Glucose Tolerance Test, OGTT)  
 

The IVGTT establishes glucose and insulin concentrations that are not seen in the normal life, and it would 

be desirable to measure insulin sensitivity in the presence of physiological conditions, e.g., during a meal 

MMTT or OGTT. In addition the IVGTT does not provide a measure of the incretin effect on insulin 

secretion. By sitting on the giant shoulders of the IVGTT minimal model method, the oral glucose minimal 

model has been developed. It  has a similar structure to the IVGTT model apart from the input: the known 



injected glucose dose is substituted by the rate of appearance of glucose in plasma described by a parametric 

function [1]. The availability of a model-independent, tracer-based measure of the systemic appearance of 

ingested glucose (see Section 3) enabled the development and validation of a model to describe glucose 

appearance after ingestion of oral glucose alone or as part of a mixed meal. 

The model provides an index of insulin sensitivity, which has been validated against independent techniques 

[2,3]. Also for MMTT/OGTT, the dynamic insulin sensitivity index can be calculated [4]. 

 

Also beta-cell function has been assessed from MTT/OGTT [5], by properly adapting the IVGTT minimal 

model to the more gradual changes in glucose, insulin, and C-peptide concentrations. From the oral model, 

two beta-cell responsivity indices can be derived as well, related to the dynamic (i.e., proportional to the rate 

of change) and the static (i.e., proportional to) glucose control. Of note, the oral beta-cell function model has 

allowed to quantitate the incretin effect [6]. 

 

By using the C-peptide oral minimal model in conjunction with a an insulin (post-hepatic) minimal model it 

has been possible to also quantitate hepatic insulin extraction [7], an important parameter to enrich the 

metabolic parametric portrait of an individual.  

 

More recently a glucagon-like-peptide 1 (GLP-1) minimal model has been developed [8] by describing the 

action of gut hormones on insulin secretion. This new model completes the metabolic indices portrait one 

can obtain from an OGTT/MMTT. 

 

The Disposition Index, like in the IVGTT, can be calculated in order to express the insulin secretory 

response as a function of the prevailing insulin action. 

 

The two glucose and C-peptide oral minimal models constitute the Oral Minimal Method which has been 

recently presented in a Perspective paper in Diabetes [9] and has been used in a number of 

pathophysiological studies, including: 

 

 Role of age and gender (Basu et al., Diabetes 2006)  

 Reduced OGTT & meal Protocols (Dalla Man et al., Diabetes 2006) 

 Pathogenesis of prediabetes (Bock et al., Diabetes 2006) 

 Role of race (Petersen et al., Proceedings of the National Academy of Science 2006) 

 Efficiency of anti-aging drugs (Nair et al., New England Journal of Medicine 2006) 

 Type 2 diabetes (Basu et al., Diabetes Care 2009) 

 Effect of DPP-4 inhibitors (Bock et al., Diabetes Care 2009) 

 Children and adolescents (Cali et al., Diabetes Care 2009; Sunehag et al., Obesity 2009) 

 Effect of PPAR alpha and gamma agonists (Balasubramanian et al., Diabetic Medicine 2010) 

 Model of GLP-1 action on insulin secretion (Dalla Man et al., Am J Physiol Endocrinol Metab 2010; 

Dalla Man et al., Diabetes Technol Ther. 2016) 

 Insulin secretion and action across the spectrum of prediabetes (Bock et al., Clin Endocrinol 2012) 

 Effect of common genetic variation on insulin secretion and action (Sathananthan et al., Diabetes 2012) 

 Pregnancy (Hodson et al., Hormone Metab Res 2013) 

 Type 1 diabetes (Hinshaw et al., Diabetes 2013) 

 Effect of colesevelam on type 2 diabetes (Smushkin et al., Diabetes 2013) 

 Effect of pramlintide administration in healthy (Hinshaw et al., Am J Physiol EM 2014) and type 1 

diabetes (Hinshaw et al., J Clin Endocrinol Metab 2016) 

 Effects of GLP-1 receptor blockade in health and after bariatric surgery (Sathananthan et al., Diabetes 

Metab Syndr Obes 2014; Shah et al., Diabetes 2014) 

 Effect of caloric restriction (Sathananthan et al., J. Nutr 2015) 

 Role of a common variant in the MTNR1b gene (Zheng et al., Obesity 2015) 



 Association between thyrotropin levels & insulin sensitivity in euthyroid obese adolescents (Javed  et 

al., Thyroid 2015) 

 Effect of Cholecalciferol supplementation (Javed et al., J Nutr. 2015) 

 Defects in mitochondrial efficiency and H2O emissions in obese women (Konopka et al., Diabetes 

2015) 

 Effects of biliopancreatic diversion (Vasques et al., Obes Surg. 2015; Vasques et al., Obes Surg. 2016) 

 Effect of metformin in prediabetes (Konopka et al., Cell Rep 2016) 

 Effect of slow-wave disruption in adolescents (Shaw et al., Sleep 2016) 

 TCF7L2 Genotype and α-cell Function in Humans Without Diabetes (Shah et al., Diabetes 2016) 

 Effects of the BET-inhibitor, RVX-208 on the HDL lipidome and glucose metabolism in individuals 

with prediabetes (Siebel et al., Metabolism 2016) 

 Effects of the BET-inhibitor, RVX-208 on the HDL lipidome and glucose metabolism in individuals 

with prediabetes (Siebel et al., Metabolism 2016) 

 Effects of dual GLP1/GCG agonist on postprandial glucose metabolism (Goebel et al., ADA 2018) 
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3. Tracer-based measurement of glucose metabolism 

 

 

Measurement of disposal and liver insulin sensitivity from an oral test 
 

Both the IVGTT and MTT/OGTT minimal models provide a composite measure of insulin action, i.e., the 

net effect of insulin to inhibit glucose production and stimulate glucose utilization. It is possible to dissect 

insulin action into its two individual components by adding a glucose tracer to the IVGTT or MTT/OGTT, 

thanks to the tracer’s ability to separate glucose utilization from production. The labeled IVGTT single 



compartment model came first [1,2], later improved by a two-compartment version [3]. More recently, a 

stable labeled MTT/OGTT model was proposed in [4] and subsequently refined in [5]. The indices of 

disposal and liver insulin sensitivity  have been validated against the independent euglycemic 

hyperinsulinemic clamp technique, e.g., for the MTT/OGTT in [6,7]. Of note is that the combined use of the 

tracer and tracee models can also provide glucose fluxes, i.e., one can arrive at the flux portrait by using a 

different experimental/modeling strategy than that described in the Section below belo. For instance during 

MTT, they provide the rate of appearance of glucose, its rate of disappearance and hepatic glucose 

production, a flux portrait [5] which has been validated against that provided by the tracer clamp technique 

[8,9,10]. 

 

 

Postprandial Glucose Fluxes. 

  

Glucose production and utilization vary as an effect of a perturbation, e.g., a meal, due to endocrine and 

nervous control mechanisms. To circumvent the need of explicitly describing these controls, Steele [11] 

proposed to use a glucose tracer and interpret the data with a single compartment model with a time-varying 

parameter. The model allowed calculating the rate of appearance Ra, and disappearance Rd, of glucose from 

the mass balance equation. An important contribution was provided by Norwich and Radziuk [12] they 

proposed an ingenious tracer clamp infusion protocol, which renders the estimation of Ra less model-

dependent, i.e., with a perfect clamp, the Ra can be calculated from the tracer infusion rate with an algebraic 

equation. This new approach was validated in dogs [13], and later put on more solid theoretical grounds by 

us [14]. The increased availability and use of stable glucose isotopes has stimulated the generalization to the 

tracer-to-tracee clamp technique [15,16,17]. Today the clamp technique has become a standard to measure 

glucose fluxes. Depending on the question being asked, both dual or triple tracer protocols are implemented, 

the rule being that if one is interested in n fluxes it is necessary to use n + 1 tracers, e.g., to estimate glucose 

production and Ra after a meal one has to use three tracers. The tracer techniques to assess postprandial 

glucose metabolism have been recently the object of a Perspective paper in Diabetes [18] where guidelines 

and operational formulas have been presented to make the technique easy to implement to assess 

postprandial glucose metabolism in prediabetes and type 2 diabetes. 

 

 

Cellular Portrait of Insulin Sensitivity in Muscle by Positron Emission Tomography (PET).  

 

While whole-body models can provide an overall measure of insulin action, it is important to measure 

insulin action at the organ/tissue level, e.g., the skeletal muscle, by quantitating the effect of insulin on the 

individual steps of glucose metabolism, i.e., transport from plasma to interstitium, transport from interstitium 

to cell, and phosphorylation. Understanding which metabolic step is impaired, e.g., in prediabetes or type 2 

diabetes, can guide a targeted therapeutic strategy. Direct measurement in vivo of these individual steps is 

not possible, and two model-based approaches are available both employing tracers with glucose at steady 

state: the classical multiple tracer dilution technique and the more recent PET technique. The multitracer 

dilution technique consists of the simultaneous injection, upstream of the organ, of more than one tracer, 

which allows separate monitoring of the individual steps of glucose metabolism. Compartmental models 

have been intensively applied to interpret multiple tracer dilution data in the human forearm skeletal muscle. 

First a two-tracer compartmental model was developed to measure transmembrane glucose transport [19], 

subsequently extended to a three-tracer model to also measure glucose phosphorylation [20]. These models 

allowed important pathophysiological findings in diabetes, e.g., they enabled demonstrating that cellular 

transport plays a very important role in the defective insulin action in diabetes [21]. 

PET is an imaging technique that allows deriving highly specific and rich biochemical information if applied 

in dynamic mode, i.e., sequential tissue images acquired following a bolus injection of radiotracer so that the 

time course of the tissue behavior is monitored. Quantitative PET information can be extracted at whole-

organ level (i.e., comparable with the triple tracer technique) as well as at region of interest (i.e., a specific 

area/volume of the organ) or voxel level. The three-rate constant glucose model of the brain by Sokoloff et 

al. [22] has been a landmark for quantitative PET metabolic studies. The model, originally proposed for 2-

deoxy-D-[14C]glucose ([14C]DG), a glucose analog, and quantified in the rat from autoradiography data, was 

immediately extended to the PET tracer [18F]fluorodeoxyglucose ([18F]FDG), another glucose analog. The 

advantage of using an analog, instead of the ideal [11C]glucose tracer, is that the end-product of 



phosphorylation is trapped in the tissue, thus reducing significantly the model complexity; the disadvantage 

is the necessity to correct for the differences in transport and phosphorylation between the analog and 

glucose with a correction factor, called lumped constant (LC). We developed a new model for studying 

glucose metabolism in the skeletal muscle: the model needed to be more complex to account for the PET 

data, and it is a five-rate constant model [23]. In fact, an additional compartment is needed to account for the 

difference between arterial and interstitial concentrations, thus introducing the two new rate constants of 

[18F]FDG exchange between plasma and extracellular space. Also with this model, by using the skeletal 

muscle LC, one can derive the glucose fractional uptake. The model has revealed inefficient transport and 

phosphorylation [18F]FDG rate constants in obesity and type 2 diabetes, but also the plasticity of the system, 

i.e., defects can be substantially reversed with weight loss [24]. The LC allows moving from [18F]FDG to 

glucose fractional uptake but not to the glucose transport and phosphorylation rate constants. To this end, a 

multiple tracer approach was needed with three different PET tracers injected sequentially [25]. This multi-

tracer PET imaging method allows quantification of blood flow from [15O]H2O images with a one 

compartment two-rate constant model; glucose transport from [11C]3-OMG images with a three-

compartment four-rate-constant model, and, finally, glucose phosphorylation by combining [18F]FDG 

fractional uptake with [11C]3-OMG rate constants. This method has shown that glucose transport from 

plasma into interstitial space is not affected by insulin, while insulin increases both glucose transport and 

phosphorylation. In addition, the study has elucidated that predominately oxidative muscles (soleus) have 

higher perfusion and higher capacity for glucose phosphorylation than less oxidative muscles (tibialis).  
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4. Maximal Models of Glucose Metabolism for In Silico Trials 

 

All the modeling work done in the last 20 years, has opened the path to a complex glucose “maximal” model 

to perform in silico clinical trials, which are defined as the use of individualized computer simulation in the 

development or regulatory evaluation of a medicinal product, medical device, or medical intervention, and 

have been proposed as a possible strategy to reduce the regulatory costs of innovation and the time to market 

for biomedical products. In fact it is often not possible, appropriate, convenient, or desirable to perform an 

experiment on human subjects because it cannot be done at all, or it is too difficult, too dangerous, or 

unethical. In such cases, simulation offers an alternative way of experimenting in silico with the system. 

They also allow to solve subject numerosity in trials where recruitment is impossible, or to explore patients’ 

phenotypes that are unlikely to appear in the trial cohort, but are still frequent enough to be of concern.  

A number of simulation models have been published in the last four decades and used in particular to 

examine the performance of control algorithms and insulin infusion routes for the therapy of Type 1 diabetes  

but their impact has been very modest [1]. The reason is that  all these models are “average,” meaning that 

they are only able to simulate average population dynamics, but not the inter-individual variability. The 

average-model approach is not sufficient for realistic in silico experimentation with control scenarios, where 

facing with inter-subject variability is particularly challenging. A good simulator should be equipped with a 

cohort of in silico subjects that spans sufficiently well the observed inter-person variability of key metabolic 

parameters, thus providing better information about controller safety and limitations than small-size animal 

trials. Building on the large-scale model developed in the healthy state from a rich triple tracer meal data set 

[2], a Type 1 diabetes simulator has been developed, able to realistically describe inter-subject variability. 



This was a paradigm change in the field of Type 1 diabetes: for the first time a computer model has been 

accepted by a regulatory agency as a substitute of animal trials for certain insulin treatments [3]. 

In this simulator, a virtual “human” is described as a combination of several glucose and insulin subsystems. 

In summary, the model consists of 13 differential equations and 35 parameters for each subject. The 

simulator is equipped with 100 virtual adults, 100 adolescents, and 100 children, spanning the variability of 

Type 1 diabetes population observed in vivo. Type 1 diabetes simulator equipped with glucose sensor and 

insulin pump models allows testing of closed-loop control algorithm for insulin infusion [3].Each virtual 

subject is represented by a model parameter vector, which is randomly extracted from an appropriate joint 

parameter distribution. With this technology, any meal and insulin delivery scenario can be pilot-tested very 

efficiently in silico, prior to its clinical application. This simulator has been adopted by the JDRF Artificial 

Pancreas Consortium and has allowed an important acceleration of closed-loop studies with a number of 

regulatory approvals obtained based on simulation only. The simulator has been used by 32 research groups 

in academia, by five companies active in the field of diabetes and has led to 63 publications in peer reviewed 

journals. 

Recently new data and models have become available, in particular on hypoglycemia and counterregulation,  

[4] and on intra-day variability of key signals, e.g., insulin sensitivity: 19 Type 1 diabetic underwent a triple-

tracer study [5] which allowed the incorporation of a circadian time-varying insulin sensitivity into the 

simulator, thus making this technology suitable for running multiple–meal scenarios and enabling a more 

robust design of artificial pancreas control algorithms [6,7]. 

In January 2008, my “maximal” model of Type 1 diabetes was accepted by the U.S. Food and Drug 

Administration (FDA) as a substitute to animal trials for the preclinical testing of certain insulin treatments, 

including the artificial pancreas. The simulator was immediately put to its intended use with the in silico 

testing of a control algorithm, and in April 2008 an investigational device exemption (IDE) was granted by 

the FDA for a closed-loop control clinical trial. This IDE was issued solely on the basis of in silico testing of 

the safety and efficacy of AP control algorithm, an event that set a precedent for future preclinical studies. 

Thus, the following paradigm has emerged: in silico modeling can produce credible preclinical results that 

could substitute certain animal trials and these results are obtained in a fraction of the time and the cost 

required for animal trials. This was a landmark change in the field of Type 1 diabetes research: for the first 

time a computer model has been accepted by a regulatory agency as a substitute of animal trials in the testing 

of insulin treatments. Since its introduction, this simulator enabled an important acceleration of artificial 

pancreas studies, with a number of regulatory approvals obtained using in silico testing. A total of 140 

candidate control algorithms have been formally evaluated by FDA resulting in 16 IDEs. In addition, he 

simulator has been used in a variety of contexts by 32 research groups in academia, by companies active in 

the field of diabetes pharma and technology and has led to more than 100 publications in peer reviewed 

journals. 

The simulator has also been used in context different from the artificial pancreas, in particular for testing 

new insulin molecules, in particular inhaled insulin [9] and long-acting glargine (ms under review) and 

interesting molecules for diabetes therapy, like pramlintide [10]. The use of the simulator in the context of 

subcutaneous glucose sensors is examined separately below given the important results achieved. 

 
 

REFERENCES 

 

1. Viceconti M., Cobelli C., Haddad T., Himes A., Kovatchev B., Palmer M., “In silico assessment of 

biomedical products: The conundrum of rare but not so rare events in two case studies”. Proc Inst Mech 

Eng H. 231:455-466, 2017. 

2. Dalla Man C., R. A. Rizza, and C. Cobelli, “Meal simulation model of the glucose-insulin system,” 

IEEE Trans Biomed Eng 54:1740–1749, 2007. 

3. Kovatchev B.P., M. Breton, C. Dalla Man, and C. Cobelli, “In silico preclinical trials: A proof of 

concept in closed-loop control of type 1 diabetes,” J Diabetes Sci Technol 3: 44–55, 2009. 

4. Dalla Man C., F. Micheletto, D. Lv, M. Breton, B. Kovatchev, and C. Cobelli, “The UVA/Padova Type 

1 Diabetes Simulator: New Features”, J Diabetes Sci Technol 8:26–34, 2014. 

5. Hinshaw L.,  Dalla Man C.,  Nandy D.K., Saad A., Bharucha A.E., Levine J.A., Rizza R.A., Basu R., 

Carter R.E., Cobelli C., Kudva Y.C., Basu A., “Diurnal pattern of insulin action in type 1 diabetes: 

implications for a closed loop system”. Diabetes 62:2223-2229, 2013. 

javascript:;
javascript:;
javascript:;


6. Visentin R., Dalla Man C., Kudva Y.C., Basu A., and Cobelli C., “Circadian variability of insulin 

sensitivity: physiological input for in silico artificial pancreas”. Diabetes Technol Ther 17:1-7, 2015. 

7. Toffanin,C., Visentin R., Messori M., Palma F.D., Magni L., and Cobelli C., “Toward a Run-to-Run 

Adaptive Artificial Pancreas: In Silico Results”. IEEE Trans Biomed Eng 65:479-488, 2018. 

8. Visentin R., Campos-Nanez E., Schiavon M., Lv D., Vettoreti M., Breton M., Kovatchev B.P., Dalla 

Man C., and Cobelli C., “The UVA/Padova Type 1 Diabetes Simulator Goes from Single Meal to 

Single Day”. J Diabetes Sci Technol 12:273-281, 2018. 

9. Visentin R., Giegerich C., Jäger R., Dahmen R., Boss A., Grant M., Dalla Man C., Cobelli C., Klabunde 

T., “Improving efficacy of inhaled technosphere insulin (afrezza) by postmeal dosing: in-silico clinical 

trial with the university of Virginia/Padova type 1 diabetes simulator”. Diabetes Technol Ther 18:574-

85, 2016. 

10. Micheletto F., Dalla Man C., Kolterman O., Chiquette E., Herrmann K., Schirra J., Kovatchev B., 

Cobelli C., “In silico design of optimal ratio for co-administration of pramlintide and insulin in type 1 

diabetes”. Diabetes Technol Ther. 15: 802- 809, 2013. 

 

 

5. Glucose Sensors 

 

I have used my modeling insights to create an algorithmically “smart” continuous glucose monitoring 

(CGM) sensor, which consists of placing, in a cascade of the output of a commercial CGM sensor, three 

software modules for (i) denoising; (ii) enhancement; and (iii) prediction [1].The signal processing code was 

released by Dexcom Inc. in its G5 sensor, which allowed by itself  to optimize its accuracy from 13% to 9%, 

making this device, in 2014, the first CGM sensor reaching one-digit accuracy. This now allows real-

time algorithms for CGM data calibration, prediction of CGM data for the early detection of hypo- 

and hyperglycaemia, real-time detection of insulin pump data faults. The sensor has been further improved 

by reducing the number of calibrations [2]. 

 

The burning question was “Does this improved accuracy make subcutaneous glucose sensors reliable for 

insulin treatment decisions?” As of today, FDA has still not approved non-adjunctive use of CGS and self-

monitoring of blood glucose is still the only admissible insulin dosing strategy. A clinical trial addressing 

this question would be almost impossible since the required number of patients to ensure exploration of the 

tail of the sensor MARD distribution would be huge. Also retrospective data are not too useful because it is 

impossible to see what would have happened of the insulin dosing was based on CGS rather than self-

monitored blood glucose. Can modelling and simulation be of help in this respect? A further contribution 

was based on using the simulator by in the context of a patient decision-making model [3]. By defining in 

silico scenarios to recreate real-life conditions, e.g. 100 adults and 100 pediatric patients, 3 meals per day 

with variability in time & amount and meal bolus behavior, we evaluated standard outcome metrics, e.g. time 

in severe hypo, time in hypo, time in target, hypo- or hyperglycemic events, for both CGS and self-

monitored blood glucose scenarios. Ou results in adults support the non-inferiority of CGS vs. self-

monitored blood glucose; moreover, time below 50 mg/dl and time below 70 mg/dl are significantly 

improved, time between 70 and 180 mg/dl and time above 180 mg/dl are slightly improved, and the number, 

extent, and duration of hypoglycemic events are significantly reduced. 

 

It is remarkable, in my view, that proof of the safety and effectiveness of the non-adjunctive use of CGM 

sensors has been so compelling  that on December 20, 2017  the FDA approved it for non-adjunctive 

use , and subsequently, in March 2018, Medicare announced criteria for system reimbursement to all T1D 

and T2D people on intensive insulin therapy. In essence, his seminal work has resulted in the convergence of 

discovery science, in depth clinical assessment, and use sophisticated in silico models to improve the life the 

millions of people through the world who have diabetes. 
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6. Artificial Pancreas  

 

We have pioneered development of the artificial pancreas as part of a JDRF international consortium to 

which we have lent our expertise in in silico and in vivo modeling with the goal of developing an 

artificial pancreas which can autonomously regulate glucose concentrations in people with Type 1 

diabetes. The FDA accepted maximal model of Type 1 diabetes glucose metabolism and the 

improvement in accuracy of glucose sensors have allowed an incredible acceleration in the artificial 

pancreas research aimed at optimizing insulin therapy in Type 1 diabetic subjects. Targeting nearly 

normal glucose with insulin therapy in Type 1 diabetes to prevent long-term hyperglycemia diabetic 

complications and to reduce hypoglycemia occurrence remains a daily challenge for the subject. An 

artificial pancreas is a device composed by a glucose sensor, a wearable insulin pump and a control unit 

embedded in a smartphone/small tablet wirelessly linked to the two other devices: it aims to automate 

insulin infusion to achieve more time in target range, while reducing both time spent in hypo- and 

hyperglycemia and decreasing the disease burden. Thanks to the FDA accepted maximal model we were 

able to do the first artificial pancreas trial in humans in 2008 in the hospital after 3 months of  the 

investigational device exemption granted by FDA issued solely on the basis of in silico testing of the 

safety and efficacy of the designed system [1]. In 2007 we developed a Modular Model Predictive 

Control (MMPC) algorithm for blood glucose regulation and a novel model-predictive control algorithm 

has been developed which uses a glucose model of the subject. In simple words, the algorithm works as a 

chess strategy, i.e. on the basis of past game (glucose) history, a several-moves-ahead strategy (insulin 

infusion) is planned, but only the first move (e.g., the next 15-min insulin infusion) is implemented; after 

the response of the opponent, the strategy is reassessed, but only the second move (the 30-min insulin 

infusion rate) is implemented, and so on. In reality glucose prediction may be different from the actual 

glucose measurement or an unexpected event may happen; with this strategy these events are taken into 

account in the next plan [2-4]. From 2007 to 2012, our MMPC algorithm was tested in 3 international 

studies in hospitalized patients, where 127 adult patients were recruited in 11 centers of 7 different 

countries [5-7]. We collected solid evidences on superior safety and efficacy of closed-loop control with 

respect to standard therapy in this controlled set-up. From 2012 to 2014 we moved outside the hospital 

for experiments lasting 2-5 days that were performed in environments more closely resembling daily life 

and free from strict protocol prescriptions: my group was the first to demonstrate the feasibility of 

outpatient ambulatory closed-loop for 48 hrs employing a “wearable” smartphone-based AP prototype 

[8]. We conduct 4 studies, recruiting a total of 85 adult patients in 5 centers of 4 countries [9-12]. Given 

the encouraging results in hotel, in 2014-2015 we run a 4 month long trial, where 32 adult patients, 

recruited in 3 countries, used our AP system during their daily life. The system tightened patients’ blood 

glucose control by reducing simultaneously hypoglycemia and hyperglycemia. In 2015 we felt that this 

technology was robust and mature enough to be tested on the most delicate population of type one 

diabetic patients: kids. We conducted the first clinical trial outside the hospital testing the a single 

hormone artificial pancreas in scholar children. 30 children, 5-9 years old, recruited in 5 Italian center 

were studied for 3 days during a summer camp. We prove the ability of the AP to reduce the incidence of 

hypoglycemia, an especially dangerous event in the especially fragile population [13].  

In a 2016 trial we moved to a next generation of artificial pancreas devices capable of learning and 

constantly updating a model describing the inter- and intra-individual variability of the subject-specific 

response to insulin, thus realizing an individualized, adaptive and fault tolerant (prompt detection of 

failures in system components, e.g. insulin pump occlusion or detachment) which is critical   for patient 



safety and treatment effectiveness in long-lasting free-living conditions. The results were first proven in 

silico [14] and subsequently confirmed in a successful outpatient trial [15,16] 

In summary, our artificial pancreas venture has involved a large international team and 127 Type 1 

diabetic subjects participating to in-patient testing (11 centers of 7 different countries), 85 patients 

participating to the transitional studies held in a hotel (involving 5 centers of 4 countries) and 32 patients 

participating to real-life testing (3 centers of 3 countries) with more than 300.000 hours of closed-loop 

data. 
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