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Abstract

Machine learning models are currently favouring Artificial Intelligence applications in
several fields, such as for instance, in finance. Through the employment of machine learn-
ing models, high predictive accuracy is achieved but at the expense of interpretability. The
loss of explainability represents a crucial issue, especially in regulated industries, as author-
ities may not validate Artificial Intelligence methods if they are unable to monitor and limit
the risks deriving from them. For this reason and according to the proposed regulations,
high-risk Artificial Intelligence applications based on machine learning must be “trustwor-
thy” and fulfill a set of basic requirements. In this paper, we propose a methodology based
on Lorenz Zonoids to assess whether a machine learning model is S.A.F.E.: Sustainable,
Accurate, Fair and Explainable.
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1. Introduction

Data driven Artificial Intelligence (AI), boosted by the availability of Machine Learning (ML) mod-
els, is rapidly expanding and changing financial services. ML models typically achieve a high accuracy,
at the expense of an insufficient explainability (see e.g. [2], [1]). Moreover, according to the proposed
regulations, high-risk AI applications based on machine learning must be “trustworthy”, and comply
with a set of further requirements, such as Sustainability and Fairness.

To date there are no standardised metrics that can ensure an overall assessment of the trustworthiness
of AI applications in finance. To fill the gap, we propose a set of integrated statistical methods, based
on the Lorenz Zonoid, the multidimensional extension of the Gini coefficient, that can be used to assess
and monitor over time whether an AI application is trustworthy. Specifically, the methods will measure
Sustainability (in terms of robustness with respect to anomalous data), Accuracy (in terms of predictive
accuracy), Fairness (in terms of prediction bias across different population groups) and explainability (in
terms of human understanding and oversight). We apply our proposal to an openly downloadable dataset,
that concerns financial prices, to make our proposal easily reproducible.

2. Methodology

Lorenz Zonoids were originally proposed by [6] as a generalisation of the Lorenz curve in a multi-
dimensional setting. When referred to the one-dimensional case, the Lorenz Zonoid coincides with the
Gini coefficient, a measure typically used for representing the income inequality or the wealth inequality
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Lorenz Zonoids and inclusion property
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Figure 1: [a] The Lorenz Zonoid; [b] The inclusion property: LZ(Ŷ ) ⊂ LZ(Y )

within a nation or a social group (see, e.g [3] and [7]). Both the Gini coefficient and the Lorenz Zonoid
measure statistical dispersion in terms of the mutual variability among the observations, a metric that is
more robust to extreme data than the standard variability from the mean.

Given a variable Y and n observations, the Lorenz Zonoid can be defined from the Lorenz (LY ) and
the dual Lorenz curves (L

′
Y ) (see [7]), whose graphical representations are provided in Fig. 1 [a].

The Lorenz curve for a variable Y (LY ), obtained by re-ordering the Y values in non-decreasing
sense, has points whose coordinates can be specified as (i/n,

∑i
j=1 yrj/(nȳ)), for i = 1, . . . , n, where

r and ȳ indicate the (non-decreasing) ranks of Y and the Y mean value, respectively. Similarly, the dual
Lorenz curve of Y (L

′
Y ), obtained by re-ordering the Y values in a non-increasing sense, has points with

coordinates (i/n,
∑i

j=1 ydj/(nȳ)), for i = 1, . . . , n, where d indicates the (non-increasing) ranks of Y .
The area lying between the LY and L

′
Y curves corresponds to the Lorenz Zonoid, which coincides with

the Gini coefficient in the one dimensional case.
From a practical view point, given n observations, the Lorenz Zonoid of a generic variable · is

computed through the covariance operator as

LZ(·) =
2Cov(·, r(·))

nE(·) , (1)

where r(·) and E(·) are the corresponding rank score and mean value, respectively.
The Lorenz Zonoid fulfills some attractive properties. An important one is the “inclusion” of the

Lorenz Zonoid of any set of predicted values Ŷ (LZ(Ŷ )) into the Lorenz Zonoid of the observed response
variable Y (LZ(Y )). The “inclusion property”, whose graphical representation is displayed in Fig. 1 [b],
allows to interpret the ratio between the Lorenz Zonoid of a particular predictor set Ŷ and the Lorenz
Zonoid of Y as the mutual variability of the response “explained” by the predictor variables that give
rise to Ŷ , similarly to what occurs in the well known variance decomposition that gives rise to the R2

measure.
In this paper, we leverage the inclusion property to derive a machine learning feature selection

method that, while maintaining a high predictive accuracy, increases explainabiity via parsimony and
can also improve both sustainability and fairness. More precisely, we present novel scores for assessing
both explainability and accuracy.

Given K predictors, a score for evaluating explainability can be defined as:

Ex-Score =

∑K
k=1 SLk

LZ(Y )
, (2)

where LZ(Y ) corresponds to the response variable Y Lorenz Zonoid-value, and SLk denotes the Shapley-
Lorenz values associated with the k-th predictor. It is worth noting that, as illustrated in [5], the Shapley-
Lorenz contribution associated with the additional included variable Xk equals to:



LZXk(Ŷ ) =
∑

X′⊆C(X)\Xk

|X ′ |!(K − |X ′ | − 1)!

K!
[LZ(ŶX′∪Xk

)− LZ(ŶX′ )], (3)

where LZ(ŶX′∪Xk
) and LZ(ŶX′ ) describe the (mutual) variability of the response variable Y ex-

plained by the models which, respectively, include the X
′ ∪Xk predictors and only the X

′
predictors.

In a similar way, and following a cross-validation procedure consisting in splitting the whole dataset
into a train and a test set, the accuracy of the predictions generated by a ML model can be derived as:

Ac-Score =
LZ(ŶX1,...,Xk

)

LZ(Ytest)
, (4)

where LZ(ŶX1,...,Xk
) is the Lorenz Zonoid of the predicted response variable, obtained using k predic-

tors on the test set, and LZ(Ytest) is the Y response variable Lorenz Zonoid value computed on the same
test set.

By exploiting the Shapley-Lorenz values and the set of the predictors which allow to ensure a suitable
degree of predictive accuracy, appropriate scores for measuring both fairness and sustainability can be
formalised.

3. Data

The considered data are described in [4] and are aimed to understand whether and how bitcoin price
returns vary as a function of a set of classical financial explanatory variables.

A further investigation of the data was carried out in a work by [5], who introduced a normalised
Shapley measure for the assessment of the contribution of each additional predictor, in terms of Lorenz
Zonoids.

The data include a time series of daily bitcoin price returns in the Coinbase exchange, as the target
variable to be predicted, and the time series of the Oil, Gold and SP500 return prices, along with those
of the exchange rates USD/Yuan and USD/Eur, as candidate explanatory variables.

The aim of the data analysis is to employ the proposed S.A.F.E. metrics derived from the Lorenz
Zonoid tool as criteria for measuring the SAFEty of a collection of machine learning models, based on
the application of neural networks.

For lack of space, we present only the results that concern explainability, in Fig. 2; and accuracy, in
Fig. 3. Both are calculated on the predictions obtained from the application of a neural network model
to the data.

Fig. 2 shows the Shapley-Lorenz measure of explainability ([5]), which is a normalised extension
of the classic Shapley values, for all considered explanatory variables of the daily bitcoin price returns.
Fig. 2 clearly highlights that the price returns of Gold is the most important variable that explains bitcoin
price return variations, followed by the others.
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Figure 2: Explainability of the considered explanatory variables, in terms of the Shapley-Lorenz
measure, for a continuous response.

Fig. 3 shows the Lorenz Zonoid of the machine learning model selected by our proposed feature
selection procedure, based on the comparison between Lorenz Zonoids.
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Figure 3: Accuracy of the selected model, in terms of its Lorenz Zonoid, for a continuous
response.

Note that the model selected in Fig. 3 contains Gold and SP500 as the relevant predictors.
For robustness, we have repeated the analysis binarising the response variable around the zero value.

The advantage of our proposed methodology is that no changes of metrics is requested to repeat the
assessment of trustworthy AI, although the nature of the response variable has changed. For lack of
space, we present only the results in terms of explainability, in Fig. 4.
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Figure 4: Explainability of the considered explanatory variables, in terms of the Shapley-Lorenz
measure for a binary response.

From Fig. 4 note that Gold price returns is confirmed as the most important variable, but the second
important variable is the Oil price, rather than SP500.

4. Conclusions

In the paper we propose a set of statistical measures that can ensure an overall assessment of the
trustworthiness of AI applications. The application of the proposed scores to a neural network model,
used to predict bitcoin price returns in terms of a set of classical financial variables, shows the practical
utility of our approach.
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